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Foreword 

This report is the third in a series that addresses “what the research says,” as Education’s ethos 
states that “without data you are just another opinion.” Like its widely quoted predecessor, the 
“Technology in Schools” report (www.cisco.com/web/strategy/docs/education/Technologyin 
SchoolsReport.pdf), and the newly introduced “Education and Economic Growth” 
(http://www.cisco.com/web/strategy/docs/education/Education-and-Economic-Growth.pdf), this 
report intends to provide a grounding in facts that can benefit the entire Education arena, from pre-
K–12 to higher education, corporate training and development, and lifelong learning. 

There is a lot of misinformation circulating about the effectiveness of multimodal learning, some of it 
seemingly fabricated for convenience. As curriculum designers embrace multimedia and 
technology wholeheartedly, we considered it important to set the record straight, in the interest of 
the most effective teaching and learning. 

As always, your welcome feedback will allow us improve the report, or suggest avenues for  
future papers. 

Happy reading, 

Charles Fadel, 
Global Lead, Education 
Cisco 
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Introduction 

“A picture is worth a thousand words.” 
–Author Unknown 

People have long quoted this statement, often attributing it to an ancient Chinese proverb. 
Emergent neuroscience and visualization research now reveals glimpses of the science behind the 
saying. Visuals matter. The rapid advances of technology in literally every field, including 
communication, medicine, transportation, agriculture, biotechnology, aerospace, and energy, have 
tremendously increased the amount of data and information at our fingertips. As we strive to make 
sense of unimaginably large volumes of data, visualization has become increasingly important. 
Why? Our brains are wired to process visual input very differently from text, audio, and sound. 
Recent technological advances through functional Magnetic Resonance Imaging (fMRI) scans 
confirm a dual coding system through which visuals and text/auditory input are processed in 
separate channels, presenting the potential for simultaneous augmentation of learning. The bottom 
line is that students using well-designed combinations of visuals and text learn more than students 
who only use text. 

A Myth Shattered: Bogus Data 

Educators are in constant search for more efficient and effective ways to advance student learning. 
Thus it is no surprise that educators have been interested in the often-quoted saying that: 

We remember… 

10% of what we read 
20% of what we hear 
30% of what we see 
50% of what we see and hear 
70% of what we say 
90% of what we say and do 

Unfortunately, these oft-quoted statistics are unsubstantiated. If most educators stopped to 
consider the percentages, they would ask serious questions about the citation. They would inquire 
about the suspicious rounding of the percentages to multiples of ten, and the unlikelihood that 
learners would remember 90 percent of anything, regardless of the learning approach.  

Despite these obvious signals, many people have blindly perpetuated these mythical statistics 
without ever checking the source. Following are just a few of the many examples where this data 
has been inappropriately used. (Because all instances could not be included, the specific citations 
used as examples here are not referenced.) Readers should conduct a Web search with the term 
“cone of learning” or “10% of what we read” to see firsthand the extent to which these incorrect 
statistics are perpetuated. 
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Figure 1.   Cited by a U.S. Company 
This graphic was accessed from the Website of an eLearning company. 
 
The source cited by the company is Edgar Dale’s Audio-Visual Methods in Technology, Holt, 
Rinehart and Winston.  
 
If representatives from the company had researched the actual text of the citation (which is out of 
print but still accessible), they would have found that Edgar Dale’s visual did not include 
percentages. 

 

 

Figure 2.   Cited by a Major U.S. University 
This graphic was accessed from the Website of a major U.S. public university.  
 
The source stated that the graphic was “developed and revised by Bruce Hyland from material by 
Edgar Dale.” 
 
Unfortunately, the site does not provide a citation for the work by Bruce Hyland, instead citing 
Edgar Dale’s book, which, as mentioned earlier, does not include the statistics. 
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Figure 3.   An Adaptation by a Private University 
This graphic was accessed from a private university Website. 
 
The site shows a derivative of Edgar Dale’s cone and then establishes the Learning Pyramid. That 
pyramid includes average retention rates. The only reference is, “The National Training 
Laboratories in Bethel, Maine,” No other citation is provided. 

 

 

Figure 4.   Cited in a Presentation by an e-Learning Company 
 
This graph was accessed through personal correspondence with a representative of  
a technology firm. 
 
The source cited (e.g., Chi et al., 1989) does not contain the referenced graph. 

 

Tracing the History of the Myth 

Edgar Dale (1954), an early researcher in the field of visual learning and the father of the Cone of 
Experience, is credited for the original linkage between instructional theory and communications 
media. Unfortunately, he is inaccurately credited with conducting the research behind the bogus 
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“data” associated with his cone. In fact, Dale’s original model of the cone does not include any 
percentages, and is explicitly described by Dale as a visual aid about audio-visual materials. Dale’s 
cone of experience is essentially a “visual metaphor” depicting types of learning, from the concrete 
to the abstract. Dale did not intend to place value on one modality over another. The shape of the 
cone is not related to retention, but rather to the degree of abstraction.1 However, he does contend 
that, as one’s experiences move toward the bottom of the cone, more of the senses are engaged 
(such as hearing, seeing, touching, smelling, tasting). 

Figure 5.   Edgar Dale’s Original Cone 
In Dale’s text, immediately before presenting the cone, he states: 
 
“Much of what we found to be true of direct and indirect experience, and of concrete and abstract 
experience, can be summarized in a pictorial device which we call the ‘Cone of Experience.’ The 
cone is not offered as a perfect or mechanically flawless picture to be taken with absolute 
literalness in its simplified form. It is merely a visual aid [original italics] in explaining the 
interrelationships of the various types of audio-visual materials, as well as their individual 
‘positions’ in the learning process…The cone device, then, is a visual metaphor of learning 
experiences, in which the various types of audio-visual materials are arranged in the order of 
increasing abstractness as one proceeds from direct experience…Exhibits are nearer to the 
pinnacle of the cone not because they are more difficult than field trips but only because they 
provide a more abstract experience. (An abstraction is not necessarily difficult. All words, whether 
used by little children or by mature adults, are abstractions.)”2 
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So where does the breakdown come from, and what is the real research behind it? An in-depth 
search of various citations produced countless dead ends. Sources quoted other sources that quoted 
still other sources, and the trail often led in circles. When authors were contacted directly, there was a 
tendency to insist, “I had the data once, but I don’t seem to have it in my files anymore.” One source 
said she “remembered it coming from some old Socony Mobil research,” but had no further 
information. In some cases, citations were incorrect and could not be followed up at all. 

Further searching led to the work of a small group of researchers dedicated to debunking what they 
called this “bogus data.” Professor Frank Dwyer of Penn State, a noted expert on research in this 
area, criticized the data quite thoroughly in his book, Strategies for Improving Visual Learning.3 
Using Dwyer’s research as his starting point, Professor Michael Molenda from the University of 
Indiana also pursued the issue for several years. Molenda’s reader commentary yielded the most 
detailed historical accounting of the “research” yet. Molenda found evidence that the “data” were 
actually developed during World War II by Lieutenant Colonel Paul John Phillips, who prepared 
training materials for the Navy and the petroleum industry.  

According to Molenda’s own research of historical records, before and after the war Phillips worked 
for the petroleum industry at the University of Texas (Austin) where he first prepared and 
distributed a handout with the “data.” Phillips’s work with the petroleum industry may explain how 
the “data” became connected with present-day Mobil Oil – also known in earlier years as Socony-
Vacuum Oil Company and Socony Mobil Oil Company. While working as the head of Training 
Methods at the Ordinance School during the war, Phillips was responsible for the training of 
instructors and the development of training doctrine. The school’s historian, Pete Kindsvatter, 
verifies that Phillips served in this capacity, but has been unable to find any documentary evidence 
of the research on which the “data” disseminated was supposedly based. Nor does the University 
of Texas have any information about the studies on which Phillips’s “data” might be based. 

Molenda concludes, based on his own searches and the research of others like him, that the 
“bogus data” are more representative of a “rounded-off generalization based on Phillips’s 
experience, and probably some test data, at the Ordnance School” than anything more 
substantial.4 5 6 To date, and despite its widespread dissemination among scholars of all stripes, 
there is no more conclusive evidence of the data’s validity than that.  

Why Do People Find the Cone of Experience so Compelling? 

The complexity of today’s global society and the accelerating rate of change require a citizenry that 
continuously learns, computes, thinks, creates, and innovates. That translates into a critical need to 
become extremely efficient in the use of the time we spend learning, since we are being required to 
continuously learn throughout our lives.  

One of the bottlenecks to efficient learning is our own physiology – the way our brains are wired 
severely limits our capacity to learn.7 8 9 10 It is precisely this limitation that educators must 
overcome through informed design of learning environments, curricula, instruction, assessments, 
and resources. As they design lessons, create learning environments, and interact with students, 
they are seeking augmentations that accommodate for these human limitations. This is analogous 
to the design of machines (such as cars, tractors, elevators, robotic factories, can openers, stairs, 
etc.) used to accommodate for our severe physical strength and endurance limitations – only now 
we are augmenting intellectual capacity rather than physical capacity. 
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Educators are continuously redesigning learning experiences in order to increase and deepen 
learning for all students, as evidenced by the recent literature on differentiated learning.11 Their 
efforts are much more likely to succeed when their work is informed by the latest research from the 
neurosciences (how the brain functions), the cognitive sciences (how people learn), and research 
on multimedia designs for learning.  

The person(s) who added percentages to the cone of learning were looking for a silver 
bullet, a simplistic approach to a complex issue. A closer look now reveals that one size does 
not fit all learners. As it turns out, doing is not always more efficient than seeing, and seeing 
is not always more effective than reading. Informed educators understand that the optimum 
design depends on the content, context, and the learner. For example, the bogus percentages on 
the cone would suggest that engaging students in collaborative learning in general would result in 
higher levels of learning than would a lesson where a student listens to narration or reads text 
about the topic. The reality is that, for the novice student engaged in basic skill building such as 
learning chemical symbols, individual learning through reading or simple drill and practice might be 
the optimal learning design. Yet, for a different learning objective – for instance, understanding 
cause and effect of a specific chemical reaction – involving that same student in collaborative 
problem-solving with fellow students through a simulation might be the most effective learning 
approach.12 13 

Within those constraints, research is emerging that provides important guidelines for multimodal 
use of media with students. Optimizing learning for each student requires more fine-grained 
differentiation of instruction that takes into account – and leverages – each of the three areas 
mentioned earlier: how the brain functions, how people learn, and multimedia design. 

Experienced teachers recognize that the design of lessons must adapt to the expertise and prior 
knowledge of the learner, the complexity of the content, and interests of the learner. Experienced 
researchers recognize that the use of technology and multimedia, resources, and lessons can vary 
in the level of interactivity, modality, sequencing, pacing, guidance, prompts, and alignment to 
student interest, all of which influence the efficiency in learning.14  

The intent of this paper is to bring to light research findings on a critical aspect of Edgar 
Dale’s Cone of Learning, the differential learning outcomes between single-mode (unimodal) 
and multiple modes (multimodal) of learning.  

To provide the context for understanding that differential, this paper briefly summarizes key 
elements of emergent research in how the brain functions, how people learn, and prior research in 
multimodal learning. It then goes on to report meta-analytic findings on the multimedia principle – 
one of numerous considerations in multimodal learning. It concludes with implications for teachers 
in their design of lessons using media.  

As background, definitions for learning, schema, and scaffolding are provided here. 

Learning is defined to be “storage of automated schema in long-term memory.”15 

Schemas are chunks of multiple individual units of memory that are linked into a system of 
understanding.16 

Scaffolding is the act of providing learners with assistance or support to perform a task 
beyond their own reach if pursued independently when “unassisted.”17 
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1: How the Brain Functions – The Physiological Limitations to Learning 
With time a limited commodity in today’s society, people are tempted by technology to do more 
than one thing at a time (such as driving and talking on the phone, reading e-mails while 
participating in audio conferences, etc.). New scientific studies reveal the losses in efficiency in 
such multitasking. Researchers find that thinking processes happen serially, resulting in delays 
caused by switching from one task to another. The delays become more pronounced as the 
complexity of the task increases.18 This explains why driver inattention and other human errors 
reportedly cause 40 percent of all traffic accidents.19 One might ask why, with our incredibly 
sophisticated brain that uses 100 billion neurons to process information at rates of up to a thousand 
times a second, we are still incapable of doing two things at once? The answer is emerging from 
neuroscience labs around the world, where scientists are using fMRI and rapid sampling 
techniques to reveal the pattern of brain activity over time as people read, listen, talk, observe, 
think, multitask, and perform other mental tasks.20  

Neuroscientists are reporting new discoveries that provide insights into long-held learning theories. 
For example, conjectures from decades ago on the existence of short-term and long-term 
memory21 and cognitive overload22 now have supporting evidence from the neurosciences.23 
Research indicates that the brain has three types of memory: sensory memory, working memory, 
and long-term memory.24 

Figure 6.   Memory Types 

 

Three types of memory: 
● Working memory: Working memory is where thinking gets done. While it is represented as 

a box in Figure 6, it is actually more brain function than location. The working memory is 
dual coded with a buffer for storage of verbal/text elements, and a second buffer for 
visual/spatial elements.25 This represents one of the severe limitations of human thinking 
processes, for short-term memory is thought to be limited to approximately four objects that 
can be simultaneously stored in visual/spatial memory and approximately seven objects that 
can be simultaneously stored in verbal short-term memory. If those buffers are full and the 
person shifts attention, new elements may be introduced into working memory causing 
others to disappear from thought/consciousness. Within working memory, verbal/text 
memory and visual/spatial memory work together, without interference, to augment 
understanding. Overfilling either buffer can result in cognitive overload.26 This includes 
buffers of visual/spatial memory traces and verbal (auditory and text) memory traces. 
Recent studies suggest that the brain is capable of multisensory convergence of neurons 
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provided the sensory input is received within the same timeframe. Convergence in the 
creation of memory traces has positive effects on memory retrieval. It creates linked 
memories, so that the triggering of any aspect of the experience will bring to consciousness 
the entire memory, often with context.  

● Sensory memory: Experiencing any aspect of the world through the human senses causes 
involuntary storage of sensory memory traces in long-term memory as episodic knowledge. 
These degrade relatively quickly. It is only when the person pays attention to elements of 
sensory memory that those experiences get introduced into working memory. Once an 
experience is in working memory, the person can then consciously hold it in memory and 
think about it in context. 

● Long-term memory: The short-term memory acts in parallel with the long-term memory. 
Long-term memory in humans is unlimited estimated to store up to 109 to 1020 bits of 
information over a lifetime – equivalent to 50,000 times the text in the U.S. Library of 
Congress.27 The brain has two types of long-term memory, episodic and semantic. Episodic 
is sourced directly from sensory input and is involuntary. Semantic memory stores memory 
traces from working memory, including ideas, thoughts, schema, and processes that result 
from the thinking accomplished in working memory. The processing in working memory 
automatically triggers storage in long-term memory. 

Figure 7 maps the process of human thinking across the three memory buffers. 

Figure 7.   Schematic of the Thinking Processes 

 

Consider the following example: 

A learner is in a science lab, working in a team on the development of an architectural design 
related to geometry. The sights, sounds, tastes, and smells are involuntarily encoded in her 
sensory memory through her dual sensory channels (verbal/text and visual/spatial): 

● Verbal/text channel: Side conversations, noise from other teams, bell systems, etc. 

● Visual/spatial channel: Current architectural drawings on screen or paper, facial 
expressions, physical movements by others, etc. 

Note: Researchers believe that gustatory, olfactory, and tactile stimuli are logged through 
the visual channels, but there is less evidence as to the location of the storage buffers. 



 

 

White Paper 

© 2008 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 11 of 24
 

The involuntary memory traces are stored in long-term memory. As the student pays attention to 
various aspects of the sensory inputs, those inputs are also stored in short-term memory for a few 
seconds – lasting only as long as she causes the synapses to fire by thinking about the inputs 
(attention). As this student contemplates further about a particular side conversation related to 
traffic patterns within school in their architectural drawing and draws conclusions, the memory trace 
moves from short-term memory to long-term memory. As the student continues to contemplate the 
traffic pattern issues, she is also able to cue up memories from her own personal experiences (from 
long-term memory) that have enriched her thinking, and thus this new memory. Should she be 
distracted by something like an office announcement over the intercom, she may experience 
attention blink (AB) and lose sight of everything else around her due to the distraction in a specific 
or in multiple channels.28 

During that experience, she might also have auditory overload that causes her to not register other 
discussions going on around her but that doesn’t prevent her from continuing to register input 
involuntarily (which gets stored momentarily in long-term memory, but doesn’t last long unless she 
pays attention to them, thus drawing them into short-term memory). Furthermore, as she 
consciously considers each sensory input or decides to work on a particular aspect of the 
architectural plans, her executive cognitive control function restricts her attention to serial 
consideration of ideas and concepts. Executive cognitive control is a phenomenon that slows down 
thinking and makes multitasking inefficient. While the student can simultaneously make a decision 
and continue to view the world around her and store memory traces in working/short-term memory 
(for these work in parallel); thinking, decision making, and cueing of long-term memories invoke 
and require the central cognitive processor, which only works serially. This is an important 
phenomenon for teachers to understand. Cognitive overload, dual processing, and the serial nature 
of the executive control explain the need for scaffolding of student learning.  

2: How People Learn – The Cognitive Sciences 

Research over the last two decades has revealed volumes on the subject of how people best learn. 
A 2001 publication from the National Academy of Sciences, How People Learn,29 outlines important 
principles upon which schools should consider redesigning learning: 

● Student preconceptions of curriculum must be engaged in the learning process. 
Students have preconceptions and prior experiences with many of the areas of study included 
in the academic standards. These are stored in long-term memory. Often some of those 
preconceptions turn out to be misconceptions. Student learning is greatly enhanced when 
each student’s prior knowledge is made visible (that is, cued from long-term memory into 
working memory). It is at that point the student has the opportunity to correct misconceptions, 
build on prior knowledge, and create schemas of understanding around a topic. Learning is 
optimized when students can see where new concepts build on prior knowledge. 

● Expertise is developed through deep understanding. Students learn more when the 
concepts are personally meaningful to them. In order to deeply understand a topic, learners 
not only need to know relevant facts, theories, and applications, they must also make sense 
of the topic through organization of those ideas into a framework (schema) of 
understanding. The development of schema requires that students learn topics in ways that 
are relevant and meaningful to them. This translates into a need for authentic learning in 
classrooms, (Note: Authentic learning is defined here to include three key concepts: depth 
of academic concept or deep learning, relevance to person(s) outside the classroom, and 
student use of the key ideas in a production.) 
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● Learning is optimized when students develop “metacognitive” strategies. To be 
metacognitive is to be constantly “thinking about one’s own thinking,” in search of optimizing 
and deepening learning. Students who are metacognitive are students who approach 
problems by automatically trying to predict outcomes, explaining ideas to themselves, noting 
and learning from failures, and activating prior knowledge. Given appropriate scaffolding by 
educators and other adults, all students can learn metacognitive strategies.  

Despite recent advances, cognitive science is a relatively new field, and thus will undoubtedly 
continue to evolve as new research is conducted. New advances in functional magnetic resonance 
imaging (fMRI) have enabled cognitive sciences to look into the black box (that is, the brain) to 
investigate what have been up until recently, merely theories that fit patterns of behavior. That work 
will undoubtedly continue to evolve to inform educators. 

The real challenge before educators today, is to establish learning environments, teaching practices, 
curricula, and resources that leverage what we now know about the limitations of human physiology 
and the capacity explained by the cognitive sciences to augment deep learning in students. 

3: Multimedia Design – Visual and Verbal Learning 

Recent neuroscience research is beginning to synergistically verify the previously speculative 
theories of multiple researchers in dual coding, cognitive overload, and multimedia learning.30  
While the field is still evolving, researchers have shown that significant increases in learning can be 
accomplished through the informed use of visual and verbal multimodal learning.  

Much has been written about the principles of multimedia listed below. Most of the published 
research studies have been of short duration and were specifically designed for research analysis, 
but have demonstrated the veracity of these principles. However, emergent research on these 
principles, when applied in classrooms, has had mixed, albeit positive, results. Many of the 
researchers have commented that such mixed results may be due to the lack of specificity of the 
type of multimedia intervention (for example, specific combinations of modalities, formats within 
modalities, learner characteristics, scaffolding of learners, learner age, complexity and type of 
learning goals addressed, etc.)  

A set of principles related to multimedia and modality are listed below. They are based on the work 
of Richard Mayer, Roxanne Moreno, and other prominent researchers.31 32 33 34 

1. Multimedia Principle: Retention is improved through words and pictures rather than through 
words alone.  

2. Spatial Contiguity Principle: Students learn better when corresponding words and pictures 
are presented near each other rather than far from each other on the page or screen.  

3. Temporal Contiguity Principle: Students learn better when corresponding words and 
pictures are presented simultaneously rather than successively.  

4. Coherence Principle: Students learn better when extraneous words, pictures, and sounds are 
excluded rather than included. 

5. Modality Principle: Students learn better from animation and narration than from animation 
and on-screen text. 

6. Redundancy Principle: Students learn better when information is not represented in more 
than one modality – redundancy interferes with learning. 

7a. Individual Differences Principle: Design effects are higher for low-knowledge learners than 
for high-knowledge learners. 
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7b. Individual Differences Principle: Design effects are higher for high-spatial learners rather 
than for low-spatial learners.  

8. Direct Manipulation Principle: As the complexity of the materials increase, the impact of 
direct manipulation of the learning materials (animation, pacing) on transfer also increases 

New Web 2.0 technologies introduce some nuances to multimodal learning that warrant continued 
research. In practice educators are getting mixed, albeit positive trends in the use of multimedia to 
augment learning. Students engaged in learning that incorporates multimodal designs, on 
average, outperform students who learn using traditional approaches with single modes. 

Figure 8 provides results from across multiple studies, separating effects related to basic and 
higher-order skills (see Appendix A for methodology and citations). 

Figure 8.   Impact of Multimodal Learning (Verbal and Visual) 

 

The findings in Figure 8 are based on meta-analytic analysis and are summarized below: 

● Quadrants I and II: The average student’s scores on basic skills assessments increase by 
21 percentiles when engaged in non-interactive, multimodal learning (includes using text 
with visuals, text with audio, watching and listening to animations or lectures that effectively 
use visuals, etc.) in comparison to traditional, single-mode learning. When that situation 
shifts from non-interactive to interactive, multimedia learning (such as engagement in 
simulations, modeling, and real-world experiences – most often in collaborative teams or 
groups), results are not quite as high, with average gains at 9 percentiles. While not 
statistically significant, these results are still positive. 
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● Quadrants III and IV: When the average student is engaged in higher-order thinking using 
multimedia in interactive situations, on average, their percentage ranking on higher-order or 
transfer skills increases by 32 percentile points over what that student would have 
accomplished with traditional learning. When the context shifts from interactive to non-
interactive multimodal learning, the result is somewhat diminished, but is still significant at 
20 percentile points over traditional means. 

This analysis provides a clear rationale for using multimedia in learning. That said, the reader 
should be cautioned that the research in this field is evolving, with recent articles suggesting that 
efficacy, motivation, and volition of learners, as well as the type of learning task and the level  
of instructional scaffolding, can weigh heavily on the learning outcomes from the use of 
multimedia.35 36 37 

Conclusion 

The complexity of teaching and learning becomes increasingly apparent as the physiological, 
cognitive, social, and emotional aspects of learning become known. The percentages related to the 
cone of learning were a simplistic attempt to explain very complex phenomenon. The reality is that 
the most effective designs for learning adapt to include a variety of media, combinations of 
modalities, levels of interactivity, learner characteristics, and pedagogy based on a complex set of 
circumstances. 

In general, multimodal learning has been shown to be more effective than traditional, unimodal 
learning. Adding visuals to verbal (text and/or auditory) learning can result in significant gains in basic 
and higher-order learning. The meta-analytic findings in this report provide insights into when 
interactivity augments multimodal learning of moderately to complex topics, and when it is 
advantageous for students to work individually when learning or building automaticity with basic skills. 

Future Research 

The opportunity for future original research and meta-analytic studies in this field is tremendous.  

First, there continues to be opportunities to ask more specific research questions related to 
multimodal learning through high-tech media. Based on the meta-analytic findings in this report, 
another logical probe would be the differentiation between interactivity related to collaboration and 
that between a student and the software or Web resources. 

The emphasis of the most multimedia studies to date has been on the impact on students’ cognitive 
structures and processes only. Educators and researchers are now asking questions related to: 

● The social affordances that multimedia representations provide. For example, Robert 
Kozma conducted research using multimedia representations in high school chemistry 
classes. His project simulated scientists’ use of investigative laboratory activities to provide 
support discussions, studies, and argumentation that result in the construction of shared 
understandings of scientific phenomena.38 Given the multiplicity of opportunity for social 
networking, collaborations, and student-student, student-instructor, and student-resource 
interactions, the complexities of the research need to become more specific and fine-
grained.39 40 

● The scaffolding required to prepare students to effectively use multimedia, visual 
representations. Many authors speculate that unless students have been trained to 
interpret visuals, the impact of multimedia will be minimal. For example, Roth and Bowen 
(2001) suggest that graph-related practices are skill sets that set scientists apart and are 
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highly contextualized. Thus students need to understand graphing specific to the 
phenomenon they are learning (such as the weather, demographics, traffic, chemistry, 
vectors, etc.)41 

● The learning designs necessary to minimize cognitive overload throughout the 
trajectory of the students’ learning. Cognitive load theory is concerned with techniques 
for managing working memory load in order to facilitate the changes in long-term memory 
associated with schema construction and automation. Sweller’s theory of cognitive overload 
includes discussions of three types of loads in the working memory. Changes in long-term 
memory related to automaticity and schema construction are essential for managing the 
load on working memory.42 The three types of memory load are:  

◦ Intrinsic: Memory that understands a concept or idea by establishing schemas (for 
example, interactivity between elements) 

◦ Germane: The degree of learner effort in construction of schemas, influenced by 
motivation and interest 

◦ Extraneous: Modality-specific neuron structures impacted by alignment between design 
elements and presentation  

All three memory loads can now be measured through fMRI. The germane load represents the effort 
the person expends in constructing and storing schemas in long-term memory that represent learning. 

As mentioned earlier, scaffolding is the provision of assistance to a learner in support of his/her 
performance that would otherwise be beyond his/her reach. Typically, the scaffolding is “faded,” 
eventually enabling the learner to become fully accomplished in the task without the scaffolding. 
Roy Pea (2004) makes an important distinction between distributed intelligence, where scaffolding 
is integral to the task and won’t be faded, versus scaffolded achievement, where fading occurs.43 
This is important given the increasing reliance on distributed intelligence among virtual teams 
versus individual intelligence; and the 24-hour reliance on distributed resources that is now 
commonplace in most work and many learning environments. For example, online resources such 
as search engines, browsers, dictionaries, and other resources are scaffolds for learning that 
probably will not be faded. This has interesting implications for assessments in schools that shift 
the emphasis to performance-based assessments of both individuals and teams.44 45 46 

● The importance of the attention and motivation of the learner. Our propensity to pay 
continuous partial attention to multiple surroundings enables us to scan and rescan our 
environment. But to encode any of the observations into memory requires us to pay 
particular attention and to think specifically about that input. While we do involuntarily take in 
sensory input through our verbal and non-verbal channels, we can control what stays 
actively thought about in working memory, and thus, what gets stored in long-term memory 
(what gets learned). In addition to variations of impact on learning due to instructional 
design of learning experiences, there are variations based on learner expertise. The 
scaffolding of learning by reducing extraneous diversions, to focus the learner’s attention on 
appropriate elements aligned to the topic, has proven effective.47 

● The importance of separating the media from the instructional approach. One of the 
challenges in research on multimedia is the confound that occurs when the media and the 
pedagogy are not defined separately. A recent meta-analysis in which over 650 empirical 
studies compared media-enabled distance learning to conventional learning found 
pedagogy to be more strongly correlated to achievement than media.48 49 



 

 

White Paper 

© 2008 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 16 of 24
 

The convergence of the cognitive sciences and neurosciences provides new insights into the field 
of multimodal learning through Web 2.0 tools. The combination will yield important guideposts in 
the research and development of e-learning using emergent, high-tech environments. 
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Appendix A: Methodology for Meta-Analytic Analysis 

The intent of this review was to summarize across quantitative studies related to the effectiveness 
of multimodal learning in comparison to traditional learning. The multiple effect sizes used in this 
study were extracted from meta-analyses and experimental or quasi-experimental design studies 
published from 1997 to 2007.  

Meta-Analysis Techniques  
Meta-analysis statistical procedures provide a measure of the difference between two groups that 
is expressed in quantitative units that are comparable across studies. As Marzano, Pickering, and 
Pollock (2001) point out, “Being able to translate effect sizes into percentile gains provides for a 
dramatic interpretation of the possible benefits of a given instructional strategy.”50 Developed by 
Gene Glass in the mid-1970s, meta-analysis allows for comparisons to be made about the relative 
effectiveness of various strategies to increase student achievement.51  

Included Studies 
In the preliminary search for studies, the search terms: multimodal, modality effect, animation, 
multimedia, memory, retention, narration, and meta-analysis were used in various combinations. 
Many studies and reports were collected which proved to be unusable for this analysis. For final 
inclusion in the meta-analysis, more stringent criteria were applied. The initial search was for meta-
analyses, with single studies included only if not included in the latest meta-analysis. To be 
included a meta-analysis or study had to have: 

● Been published after 1997  

Note: If a meta-analysis was published after 1997 it was included even if the studies 
analyzed within the study were published before 1997.  

● Addressed multimedia in education 

● Used student achievement, retention, basic skills, higher-order skills, or transfer skills as 
dependent variable 

● Been experimental or quasi-experimental comparing multimodal to single-modality learning 

● Reported effect size (ES) or the statistics necessary to calculate 

● Been for general education students, classes, or adults (not dealing exclusively with a 
special subpopulation) 

For this analysis, a total of 14 studies or meta-analyses were identified through the application of 
the above criteria. Within the 14 articles, 23 independent studies or meta-analyses were identified. 
Each of the independent studies was then classified based on the type of intervention (multimodal 
interactive or multimodal non-interactive) and by the type of assessment used to determine the 
effect size (assessment of retention/basic skills or assessment of higher-order/transfer skills). That 
enabled the researchers to classify the studies into four categories: 1) Basic skills, non-interactive; 
2) Basic skills, interactive, 3) Higher-order skills, interactive, and 4) Higher order skills, non-
interactive. (See tables A1–A4.) Overall, the studies contained a combined sample of nearly 6,000 
students. The average number of students in each independent study or meta-analysis was 
approximately 260. Seventy percent of the studies were published after 2003, while 30 percent 
were published before.  
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Methods for Calculating Effect Size 
Effect sizes were calculated using sample and study-weighted procedures. Sample weighting 
means greater weight is given to effect sizes associated with larger samples based on the 
assumption that larger samples are better able to approximate actual effects of the target 
population. In other words, the weighted effect size equals the sum of the products of the study 
effect sizes (d) and their associated sample sizes (n), divided by the sum of the n’s. 

The studies used in the meta-analysis varied by the number of comparisons they reported. These 
multiple results from the same study can be problematic for meta-analysis because the separate 
estimates in the same study are not completely independent – they share historical and situational 
influences, and some of them even share influences contributed by having been collected from the 
same people.52 To give all studies the same unit weight in the analysis, only one effect size was 
used from each independent study. In some cases this represented the average of appropriate 
effect sizes; in other cases it was simply the effect size appropriate to the analysis criteria. 

The following four tables include the studies analyzed based on the categorization described above. 

Table 1. Studies for Non-Interactive, Basic Skills (Quadrant 1) 

Non-Interactive Multimodal 
Basic Skills 

Intervention Assessment N ES 

Moreno & Valdez (2005) Non-interactive (words vs. 
words/pictures + pictures vs. 
words/pictures) 

Retention 35 1.30 

Chan & Black (2006)  Text vs. text + static visuals Recall (visual and verbal) 189 0.47 

Kalyuga et al (2004) Auditory only vs. visual + auditory Retention test 21 –0.82 

Kim & Olaciregui (2007) Folder-based vs. concept map 
access to digital resources 

Retention 51 0.81 

Kalyuga et al (1999) Auditory vs. visual vs. auditory + 
visual 

Multiple choice – content 16 0.74 

Dubois & Vial (2000) Text vs. integration of 
text/image/sound 

Vocabulary test 45 0.61 

Table 2. Studies for Interactive, Basic Skills (Quadrant II) 

Interactive Multimodal 
Basic Skills 

Intervention Assessment N ES 

Moreno & Valdez (2005)  Interactive (words vs. words/pictures 
+ pictures vs. words/pictures) 

Retention 40 1.77 

Lee (1999) Meta-analysis: simulations Achievement 563 0.35 

Rosen & Salomon (2007) Meta-analysis: constructivist, 
technology-rich 

Retention 2168 0.11 

Kalyuga et al (2004) Exp. #1 – Text vs. visual + audio Multiple choice – content 34 –0.64 

Chan & Black (2006)  Text vs. text + manipulations Recall (visual and verbal) 189 1.04 
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Table 3. Studies for Interactive, Higher-Order/Transfer Skills (Quadrant III) 

Interactive Multimodal Intervention Assessment N ES 

Chan & Black (2006)  Text vs. text + manipulations Transfer (averaged) 189 0.84 

Moreno & Valdez (2005) 
 
NOTE: Averaged comparison 
of text and direct manipulation 
to text 

Interactive (words vs. words/pictures 
+ pictures vs. words/pictures) 

Transfer 35 1.06 

Grimshaw et al. (2006) CD text vs. CD text + narration Comprehension test 52 0.68 

Kim & Olaciregui (2007) Folder-based vs. concept map 
access to digital resources 

Comprehension tests 51 1.42 

Mayer (2003) Meta (5) Comprehension tests 204 1.67 

Rosen & Salomon (2007) Meta-analysis: constructivist, 
technology-rich 

Transfer 1837 0.90 

De Westelinck (2004) Compared text to text + text 
representation 

Retention/transfer 63 –1.12 

Atkinson (2002) Control vs. text + agent or voice + 
agent 

Far transfer 30 0.82 

Table 4. Studies for Non-Interactive, Higher-Order/Transfer Skills (Quadrant IV) 

Non-Interactive Multimodal 
Higher Order/Transfer Skills 

Intervention Assessment N ES 

Chan & Black (2006)  Text vs. text + static visuals Transfer (averaged 3 transfer 
effect sizes)  

189 0.40 

McKay (1999) Text only vs. text + graphics Pre-/post-test 41 0.53 

Moreno & Valdez (2005)  Non-interactive (words vs. 
words/pictures + pictures vs. 
words/pictures) 

Transfer test 40 0.84 

Tindall-Ford, Chandler, and 
Sweller (1997)  

Text vs. text + graphics Transfer test 30 0.99 

Note: Cohen (1969) proposed that an effect size of 0.2 could be regarded as “small,” that an effect size of 0.5 
could be regarded as “medium,” and that an effect size of 0.8 could be regarded as “large.” Cohen’s proposals 
have become widely accepted as rules of thumb in educational and social research. However, they were put 
forward without any consideration of the effect sizes that it was reasonable to expect in real research studies. 
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